【AI-模型代码解析】中文问题生成模型

写在前面

代码总览

  • _train_0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
## 自动写诗的例子
import io
import sys
sys.path.append("/NLP/bert_seq2seq-master/RoBERTa")
import torch
from tqdm import tqdm
import numpy as np
import json
from config import sentiment_batch_size, sentiment_lr, roberta_chinese_model_path
from model.test_n_0 import Seq2SeqModel
from model.roberta_model_0 import BertConfig
import time
from torch.utils.data import Dataset, DataLoader
from tokenizer import Tokenizer, load_chinese_base_vocab, BasicTokenizer
from lattice.utils_ import Trie, get_skip_path
from Data.lattice.TestLattice import load_cival_rules_rich_pretrain_word_list

w_trie = Trie()
def get_w_tire():
w_list = load_cival_rules_rich_pretrain_word_list("./Data/lattice/toumu.txt",
_refresh=False,
_cache_fp='cache/{}'.format("rules_lattice")
)
for w in w_list: # 构建词典树
w_trie.insert(w)
print(w_trie)
# get_w_tire()
def create_dataset():
get_w_tire()
input_result = []
output_result = []
token_len = []
target = io.open("./Data/new_tumu/question_train", encoding='UTF-8')
source = io.open("./Data/new_tumu/answer_train", encoding='UTF-8')
for scr, tar in zip(source, target):
scr = scr.replace("\n", "")
tar = tar.replace("\n", "")

if len(scr) + len(tar) >= 100:
continue
lexicons = get_skip_path(scr, w_trie)
for i in range(len(lexicons) - 1, 0, -1):
for j in range(i - 1, -1, -1):
if lexicons[i][2] == lexicons[j][2]:
del lexicons[i]
break
# if len(lexicons) > 21:
# lexicons = lexicons[0:20]
tempLexicons = list(map(lambda x: x[2], lexicons))
lexicons.append(tempLexicons)
lexicons.insert(0, scr)
input_result.append(lexicons)

output_result.append(tar)
print(len(input_result))
return input_result, output_result

## 自定义dataset
class PoemDataset(Dataset):
"""
针对特定数据集,定义一个相关的取数据的方式
"""

def __init__(self):
## 一般init函数是加载所有数据
super(PoemDataset, self).__init__()
# 读原始数据
self.sents_src, self.sents_tgt = create_dataset()
self.word2idx = load_chinese_base_vocab()
self.idx2word = {k: v for v, k in self.word2idx.items()}
self.tokenizer = Tokenizer(self.word2idx)
self.pidding_idx = 0
# print(self.sents_src[:3])

def deal(self, i):
src = []
l = len(self.sents_src[i][-1])
len_position = self.tokenizer._tokenize(self.sents_src[i][0])

relation_position_s = [self.pidding_idx]+list(range(1, len(len_position)+1))
relation_position_e = [self.pidding_idx]+list(range(1, len(len_position)+1))
pre_start = 0
start = 0
for index in range(len(self.sents_src[i]) - 1):
temp = self.sents_src[i][index]
if index == 0:
src.append(temp)
continue
isAppend = 0
for k in temp[2]:
flat = len(temp[2])
if k == temp[2][0]:
try:
if pre_start == 0 or pre_start < 0:
start = len_position.index(k)+1
else:
start = len_position.index(k, pre_start)+1
except:
break
relation_position_s.append(start)
relation_position_e.append(self.pidding_idx)
if k == temp[2][-1]:
try:
if pre_start == 0 or pre_start < 0:
end = len_position.index(k)+1
else:
end = len_position.index(k, pre_start)+1
if end - start != flat-1:
isAppend = 1
for m in range(len(temp[2]) - 1):
relation_position_s.pop(-1)
relation_position_e.pop(-1)
break
pre_start = end - 2
except:
for m in range(len(temp[2])-1):
relation_position_s.pop(-1)
relation_position_e.pop(-1)
break
relation_position_e.append(end)
relation_position_s.append(self.pidding_idx)
elif k != temp[2][0] and k != temp[2][-1]:
relation_position_s.append(self.pidding_idx)
relation_position_e.append(self.pidding_idx)
if isAppend == 0:
src.append(temp[2])
src = ''.join(src)

tgt = self.sents_tgt[i]
# src = self.sents_src[i][0]


return src, tgt, relation_position_s, relation_position_e, l

def __getitem__(self, i):
## 得到单个数据
src, tgt, relation_position_s, relation_position_e, lex_num = self.deal(i)
token_ids, token_type_ids = self.tokenizer.encode(src, tgt)
# print(token_type_ids)
input_length = token_type_ids[:token_type_ids.index(1)]
# if len(token_ids) < len(src):
# relation_position_s = list(range(len(token_ids)))
# relation_position_e = list(range(len(token_ids)))

output = {
"token_ids": token_ids,
"token_type_ids": token_type_ids,
"relation_position_s": relation_position_s,
"relation_position_e": relation_position_e,
"lex_num": lex_num,
"input_length": input_length
}
return output

def __len__(self):

return len(self.sents_src)



# class PoemDataset2(Dataset):
# """
# 针对特定数据集,定义一个相关的取数据的方式
# """
#
# def __init__(self):
# ## 一般init函数是加载所有数据
# super(PoemDataset2, self).__init__()
# # 读原始数据
# self.sents_src, self.sents_tgt = create_dataset2()
# self.word2idx = load_chinese_base_vocab()
# self.idx2word = {k: v for v, k in self.word2idx.items()}
# self.tokenizer = Tokenizer(self.word2idx)
# # print(self.sents_src[:3])
#
# def deal(self, i):
# src = []
# l = len(self.sents_src[i][-1])
# relation_position_s = list(range(len(self.sents_src[i][0])))
# relation_position_e = list(range(len(self.sents_src[i][0])))
# for index in range(len(self.sents_src[i]) - 1):
# temp = self.sents_src[i][index]
# if index == 0:
# src.append(temp)
# continue
# src.append(temp[2])
# relation_position_s.append(temp[0])
# relation_position_e.append(temp[1])
# src = ''.join(src)
# tgt = self.sents_tgt[i]
#
# return src, tgt, relation_position_s, relation_position_e, l
#
# def __getitem__(self, i):
# ## 得到单个数据
# # print(i)
# # print(self.sents_src[i][0])
# # print(self.sents_src[i])
# # print(len(self.sents_src[i][0]))
# # print(len(self.sents_src[i][-1]))
# src, tgt, relation_position_s, relation_position_e, lex_num = self.deal(i)
# token_ids, token_type_ids = self.tokenizer.encode(src, tgt)
#
# if len(token_ids) < len(src):
# relation_position_s = list(range(len(token_ids)))
# relation_position_e = list(range(len(token_ids)))
#
# output = {
# "token_ids": token_ids,
# "token_type_ids": token_type_ids,
# "relation_position_s": relation_position_s,
# "relation_position_e": relation_position_e,
# "lex_num": lex_num
# }
# return output
#
# def __len__(self):
#
# return len(self.sents_src)
class PoemDataset1(Dataset):
"""
针对特定数据集,定义一个相关的取数据的方式
"""

def __init__(self):
## 一般init函数是加载所有数据
super(PoemDataset1, self).__init__()
# 读原始数据
self.sents_src, self.sents_tgt = create_dataset()
self.word2idx = load_chinese_base_vocab()
self.idx2word = {k: v for v, k in self.word2idx.items()}
self.tokenizer = Tokenizer(self.word2idx)

def deal(self, i):
src = []
l = len(self.sents_src[i][-1])
relation_position_s = list(range(len(self.sents_src[i][0])))
relation_position_e = list(range(len(self.sents_src[i][0])))
for index in range(len(self.sents_src[i]) - 1):
temp = self.sents_src[i][index]
if index == 0:
src.append(temp)
continue
src.append(temp[2])
relation_position_s.append(temp[0])
relation_position_e.append(temp[1])
src = ''.join(src)
tgt = self.sents_tgt[i]

return src, tgt, relation_position_s, relation_position_e, l

def __getitem__(self, i):
## 得到单个数据
# print(i)
src, tgt, relation_position_s, relation_position_e, lex_num = self.deal(i)
token_ids, token_type_ids = self.tokenizer.encode(src, tgt)

if len(token_ids) < len(src):
relation_position_s = list(range(len(token_ids)))
relation_position_e = list(range(len(token_ids)))

output = {
"token_ids": token_ids,
"token_type_ids": token_type_ids,
"relation_position_s": relation_position_s,
"relation_position_e": relation_position_e,
"lex_num": lex_num
}
return output

def __len__(self):

return len(self.sents_src)


def collate_fn(batch):
"""
动态padding, batch为一部分sample
"""

def padding(indice, max_length, pad_idx=0):
"""
pad 函数
注意 token type id 右侧pad是添加1而不是0,1表示属于句子B
"""
pad_indice = [item + [pad_idx] * max(0, max_length - len(item)) for item in indice]
return torch.tensor(pad_indice)

token_ids = [data["token_ids"] for data in batch]
max_length = max([len(t) for t in token_ids])
token_type_ids = [data["token_type_ids"] for data in batch]
relation_position_s = [data["relation_position_s"] for data in batch]
relation_position_e = [data["relation_position_e"] for data in batch]
lex_num = [data["lex_num"] for data in batch]
input_length = [data["input_length"] for data in batch]
padding_idx = 0

token_ids_padded = padding(token_ids, max_length)
token_type_ids_padded = padding(token_type_ids, max_length, pad_idx=1)
relation_position_s_padded = padding(relation_position_s, max_length, pad_idx=padding_idx)
relation_position_e_padded = padding(relation_position_e, max_length, pad_idx=padding_idx)
target_ids_padded = token_ids_padded[:, 1:].contiguous()


return token_ids_padded, token_type_ids_padded, target_ids_padded, relation_position_s_padded, relation_position_e_padded, lex_num, input_length
# return token_ids_padded, token_type_ids_padded, target_ids_padded, relation_position_s_padded, relation_position_e_padded, lex_num


class PoemTrainer:
def __init__(self, random):
# 加载情感分析数据
self.random = random
self.pretrain_model_path = roberta_chinese_model_path
# 这个最近模型的路径可以用来继续训练,而不是每次从头训练
# self.recent_model_path = "../poem_state_dict/bert_poem.model.epoch.9"
self.batch_size = sentiment_batch_size
self.lr = sentiment_lr
# 加载字典
self.word2idx = load_chinese_base_vocab()
# 判断是否有可用GPU
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: " + str(self.device))
# 定义模型超参数
bertconfig = BertConfig(vocab_size=len(self.word2idx))
# 初始化BERT模型
self.bert_model = Seq2SeqModel(config=bertconfig)
## 加载预训练的模型~
self.load_model(self.bert_model, self.pretrain_model_path)
# self.load_recent_model(self.bert_model, self.recent_model_path)
# 将模型发送到计算设备(GPU或CPU)
self.bert_model.to(self.device)
# 声明需要优化的参数
self.optim_parameters = list(self.bert_model.parameters())
# self.init_optimizer(lr=self.lr)
self.init_optimizer(self.lr)
# self.freeze_parameters()
# 声明自定义的数据加载器
dataset = PoemDataset()
# dataset1 = PoemDataset1()
self.dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn)
# self.dataloader1 = DataLoader(dataset1, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn)

def init_optimizer(self, lr):
# 用指定的学习率初始化优化器
# 冻结某层参数
for name, param in self.bert_model.named_parameters():
param.requires_grad = True
print("模型参数解冻")
self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3)

# def init_optimizer(self, lr):
# # 用指定的学习率初始化优化器
# self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3)

# def load_model(self, model, pretrain_model_path):

def load_model(self, model, pretrain_model_path):

checkpoint = torch.load(pretrain_model_path)
# 模型刚开始训练的时候, 需要载入预训练的BERT

# checkpoint = {k[5:]: v for k, v in checkpoint.items()
# if k[:4] == "bert" and "pooler" not in k}

model.load_state_dict(checkpoint, strict=False)
torch.cuda.empty_cache()
print("{} loaded!".format(pretrain_model_path))

def load_recent_model(self, model, recent_model_path):
checkpoint = torch.load(recent_model_path)
model.load_state_dict(checkpoint)
torch.cuda.empty_cache()
print(str(recent_model_path) + "loaded!")

def train(self, epoch):
# 一个epoch的训练
self.bert_model.train()

self.iteration(epoch, train=True)

def freeze_parameters(self):
freeze_layers = ['embeddings', 'layer.0', 'layer.1', 'layer.2', 'layer.3', 'layer.4', 'layer.5', 'layer.6', 'layer.7', 'layer.8', 'layer.9', 'layer.10', 'layer.11', 'bert.pooler', 'out.weight', 'out.bias']

for name, param in self.bert_model.named_parameters():
param.requires_grad = True
for ele in freeze_layers:
if ele in name:
param.requires_grad = False
break
print("冻结模型参数")
self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.bert_model.parameters()), lr=self.lr, weight_decay=1e-3)

def iteration(self, epoch, train=True):
total_loss = 0
total_loss1 = 0
start_time = time.time() ## 得到当前时间
step = 0
# 训练开放域

# for token_ids, token_type_ids, target_ids, relation_position_s, relation_position_e, lex_num in tqdm(self.dataloader, position=0, leave=True):
for token_ids, token_type_ids, target_ids, relation_position_s, relation_position_e, lex_num ,input_length in tqdm(self.dataloader, position=0, leave=True):
step += 1
if step % 800== 0:
self.bert_model.eval()
test_data = ["设备限界车辆在故障运行状态下所形成的最大动态包络线,用以限制行车区的设备安装。"]
tail = -1
for text in test_data:
print(self.bert_model.generate(text, beam_size=1, tail=tail, device=self.device))
# tail = 0
self.bert_model.train()

token_ids = token_ids.to(self.device)

token_type_ids = token_type_ids.to(self.device)
target_ids = target_ids.to(self.device)

relation_position_s = relation_position_s.to(self.device)
relation_position_e = relation_position_e.to(self.device)


# 因为传入了target标签,因此会计算loss并且返回
# try:
predictions, loss = self.bert_model(token_ids,
token_type_ids,
labels=target_ids,
device=self.device,
random=-1,
lex_num=lex_num,
pos_s=relation_position_s,
pos_e=relation_position_e,
input_length=input_length
)
if train:
# 清空之前的梯度
self.optimizer.zero_grad()
# 反向传播, 获取新的梯度
loss.backward()
# 用获取的梯度更新模型参数
self.optimizer.step()

# 为计算当前epoch的平均loss
total_loss += loss.item()

with open("losses", "a") as f:
epoch_loss = np.mean(total_loss)
# epoch_loss1 = np.mean(total_loss1)
f.write("Epoch: {}, Loss_1t: {}\n".format(str(epoch), str(epoch_loss)))
end_time = time.time()
spend_time = end_time - start_time

# 打印训练信息
# print("epoch is " + str(epoch) + ". loss_1 is " + str(total_loss) + ". loss_2 is " + str(total_loss1) + ". spend time is " + str(spend_time))
print("epoch is " + str(epoch) + ". loss_1 is " + str(total_loss) + ". spend time is " + str(spend_time))
# 保存模型
# self.bert_model.eval()
# test_data = ["适用于地基差的场地,但耐腐蚀性差,需经常维护。"]
# for text in test_data:
# print(self.bert_model.generate(text, beam_size=2, device=self.device))
# self.bert_model.train()
self.save_state_dict(self.bert_model, epoch)
# if epoch%10 == 0:
# epoch_0 = epoch % 5
# checkpoint = torch.load("./test_1/bert_poem.model.epoch-0.{}".format(str(epoch_0)))
#
# for k, v in checkpoint.items():
# if "Transformer_Encoder.layer_0.pe_ss" in k:
# print(v)

def save_state_dict(self, model, epoch, file_path="bert_poem.model"):
"""存储当前模型参数"""
epoch = epoch % 5
save_path = "./new12-2/" + file_path + ".epoch-0.{}".format(str(epoch))
torch.save(model.state_dict(), save_path)
print("{} saved!".format(save_path))


if __name__ == '__main__':

# word2idx = load_chinese_base_vocab()
# tokenier = Tokenizer(word2idx)
#
trainer = PoemTrainer(True)
train_epoches = 500
for epoch in range(1, train_epoches + 1):
# 训练一个epoch
torch.cuda.empty_cache()
trainer.train(epoch)

该代码实现了基于BERT的自动写诗模型

主要流程包括:

数据加载、模型定义、训练和测试

代码分部分解析

导入必要的库和模块

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import io
import sys
sys.path.append("/NLP/bert_seq2seq-master/RoBERTa")
import torch
from tqdm import tqdm
import numpy as np
import json
from config import sentiment_batch_size, sentiment_lr, roberta_chinese_model_path
from model.test_n_0 import Seq2SeqModel
from model.roberta_model_0 import BertConfig
import time
from torch.utils.data import Dataset, DataLoader
from tokenizer import Tokenizer, load_chinese_base_vocab, BasicTokenizer
from lattice.utils_ import Trie, get_skip_path
from Data.lattice.TestLattice import load_cival_rules_rich_pretrain_word_list

构建词汇树

1
2
3
4
5
6
7
8
9
10
w_trie = Trie()

def get_w_tire():
w_list = load_cival_rules_rich_pretrain_word_list("./Data/lattice/toumu.txt",
_refresh=False,
_cache_fp='cache/{}'.format("rules_lattice")
)
for w in w_list: # 构建词典树
w_trie.insert(w)
print(w_trie)

这部分代码创建了一个词汇树(Trie

并从指定文件中加载预训练词汇列表来填充这个树

这有助于后续处理文本时进行词汇匹配

  • Copyrights © 2024-2025 brocademaple
  • 访问人数: | 浏览次数:

      请我喝杯咖啡吧~

      支付宝
      微信